

ASIAN SCHOOL OF TECHNOLOGY, BHUBANESWAR

DEPARTMENT OF CIVIL ENGINEERING

LESSON PLAN

Discipline: Civil engineering	Semester : 3 rd	No. of periods available: 51	Name of Teaching Faculty: Ankita Rath
Subject: Mechanics of Materials	No. of Days/ per week class allotted : 4 periods per week		No. of weeks : 13
Week	Class Day		Topics to be covered
1 st	1 st	1	Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram
	2 nd	1	Review of CG and MI of different sections
	3 rd	1	Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability
	4 th	1	Types of stresses - Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains
2 nd	5 th	1	Problem Practice & Doubt Clearing
	6 th	1	Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain
	7 th	1	Computation of stress, Strain, Poisson's ratio,

			ahanga in dimansions and
			change in dimensions and
	8 th	1	volume etc.,
	8	1	Hooke's law - Elastic
			Constants, Derivation of
			relationship between the
and .	41.		elastic constants.
3 rd	9 th	1	Behaviour of ductile and
			brittle materials under
			direct loads, Stress Strain
			curve of a ductile
			material, Limit of
			proportionality, Elastic
			limit, Yield stress,
			Ultimate stress, Breaking
			stress
	10 th	1	Percentage elongation,
			Percentage reduction in
			area, Significance of
			percentage elongation and
			reduction in area of cross
			section, Deformation of
			prismatic bars due to
			uniaxial load,
			Deformation of prismatic
			bars due to its self-
	11 th	1	weight. Problem Practice &
	11	1	
	12 th	1	Doubt Clearing
4 th	12 13 th	1	Unit Test-1
4	13	1	Occurrence of normal and
			tangential stresses,
			Concept of Principal
			stress and Principal
			Planes, Major and minor
			principal stresses and
	th		their orientations
	14 th	1	Mohr's Circle and its
			application to solve
			problems of complex
	,		stresses
	15 th	1	Bending stress in beams –
			Theory of simple bending
			Assumptions
	16 th	1	Moment of resistance –
			Equation for Flexure–
			Flexural stress
			distribution
5 th	17 th	1	Curvature of beam –
			Position of N.A. and
			Centroidal Axis –
			Flexural rigidity –
			Significance of Section
			modulus
	18 th	1	Shear stress distribution
ĺ	10	1	Direct suces distribution

	1	1	
			in beams of rectangular,
			circular and standard
			sections symmetrical
			about vertical axis
	19 th	1	Unit Test-2
	20^{th}	1	Concept of torsion, basic
			assumptions of pure
			torsion
6 th	21 st	1	Torsion of solid and
	21	1	hollow circular sections
	22 nd	1	& Problem Practice
	22	1	Polar moment of inertia,
			torsional shearing
			stresses, angle of twist,
			torsional rigidity,
			equation of torsion
	$23^{\rm rd}$	1	Combination of stresses,
			Combined direct and
			bending stresses
	24 th	1	Maximum and Minimum
	2.	1	stresses in Sections,
			Conditions for no tension
			& Problem Practice
7^{th}	25 th	1	
/	25	1	Limit of eccentricity,
	o sth	4	Middle third/fourth rule,
	26 th	1	Core or Kern for square,
			rectangular and circular
			sections, chimneys, dams
			and retaining walls
	27 th	1	Problem Practice
	28 th	1	Columns and Struts,
			Definition, Short and
			Long columns, End
			conditions, Equivalent
			length / Effective length,
			Slenderness ratio, Axially
			loaded short and long
			_
8 th	29 th	1	column Fular's theory of long
ð	29	1	Euler's theory of long
			columns, Critical load for
			Columns with different
	4.		end conditions
	30^{th}	1	Types of Loads:
			Concentrated (or) Point
			load, Uniformly
			Distributed load (UDL),
			Types of Supports:
			Simple support, Roller
			support, Hinged support,
			Fixed support, Types of
			Reactions: Vertical
			reaction, Horizontal
			reaction, Moment
			reaction, Types of Beams

П	T		board on several
			based on support
	2.1.81	-	conditions
	31 st	1	Calculation of support
			reactions using equations
	nd.		of static equilibrium
,	32 nd	1	Problem Practice
9 th	$33^{\rm rd}$	1	Shear Force and Bending
			Moment: Signs
			Convention for S.F. and
			B.M, S.F and B.M of
			43general cases of
			determinate beams with
			concentrated loads and
			udl only
	34 th	1	S.F and B.M diagrams for
			Cantilevers
	35 th	1	S.F and B.M diagrams for
		•	Simply supported beams
			and Over hanging beams
	36 th	1	Position of maximum
	50	1	BM, Point of contra
			flexure, Relation between
			intensity of load, S.F and
10 th	37 th	1	B.M.
10'	37	1	Shape and nature of
			elastic curve (deflection
			curve); Relationship
			between slope, deflection
			and curvature (No
			derivation), Importance
	th		of slope and deflection
	38 th	1	Slope and deflection of
			cantilever and simply
			supported beams under
			concentrated by Double
			Integration method
	39 th	1	Slope and deflection of
			cantilever and simply
			supported beams under
			uniformly distributed load
			by Double Integration
			method.
	40	1	Slope and deflection of
			simply supported beams
			under concentrated and
			uniformly distributed load
			by Macaulay's method.
11 th	41 st	1	Indeterminacy in
	••	1	beams, Principle of
			consistent
			deformation/compatibility
	42 nd	1	Analysis of propped
	72	1	cantilever
	43 rd	1	Fixed and two span
	43	1	Tiacu anu two span

			continuous beams by
			principle of superposition
	44 th	1	Fixed and two span
	'''	1	continuous beams by
			principle of superposition
12 th	45 th	1	SF and BM diagrams
12	43	1	(point load and udl
			covering full span)
	46 th	1	Types of trusses,
	40	1	statically determinate and
			indeterminate trusses,
			degree of indeterminacy,
			stable and unstable
			trusses, advantages of
	th		trusses
	47 th	1	Analytical method (
			Method of joints, method
			of Section)
	48 th	1	Previous years Q&A
			Discussion
13 th	49 th	1	Previous years Q&A
			Discussion
	50 th	1	Previous years Q&A
			Discussion
	51 st	1	Quiz-2
	52 nd	1	Problem Practice